*

Hapuku (2020)

Polyprion oxygeneios

  • Rowan C. Chick (Department of Primary Industries, New South Wales)
  • Ashley Fowler (Department of Primary Industries, New South Wales)
  • Lee Georgeson (Australian Bureau of Agricultural and Resource Economics and Sciences)
  • Jeff Norriss (Department of Primary Industries and Regional Development, Western Australia)
  • Anthony Roelofs (Department of Agriculture and Fisheries, Queensland)
  • Paul Rogers (SARDI Aquatic Sciences, South Australia)

You are currently viewing a report filtered by jurisdiction. View the full report.

Toggle content

Summary

The stock structure of Hapuku in Australian waters is unknown. Hapuku stock status at the jurisdictional level is sustainable in WA, negligible in QLD and SA, and undefined in NSW and Commonwealth waters.

Toggle content

Stock Status Overview

Stock status determination
Jurisdiction Stock Stock status Indicators
New South Wales New South Wales Undefined

Catch, effort, standardised catch rate, nominal catch rate

Toggle content

Stock Structure

The stock structure of Hapuku throughout Australian waters is unknown. Life history characteristics similar to Bass Groper (Polyprion americanus) suggest mixing across broad geographic areas [Ball et al. 2000]. However, Beentjes and Francis [1999] inferred the likelihood of separate stocks within New Zealand based on tagging studies of Hapuku, despite recorded movements of up to about 1 400 km. Paul [2002] reported on the stock structure of Hapuku (and Bass Groper) in New Zealand, concluding that stock structure could not be described, and that there was insufficient data describing the life history characteristics to distinguish different stocks. Wakefield et al. [2010] described differences in aged-based demography and reproduction of Hapuku among regions of Western Australia, and likely pan-oceanic mixing of the broader Hapuku population (including Indian Ocean). No such investigations have been done on Hapuku throughout eastern and south eastern Australian waters to develop our understanding of stock structure. It is likely Hapuku in eastern and south eastern Australian waters constitute one or more stocks of a greater population and fisheries within this region access this stock or subset of stocks in support of their annual catches. Panmixia could be expected throughout the region, owing to the extended larval/juvenile phase (years) and large-scale genetic homogeneity of congener P. americanus which has similar life-history traits [Ball et al. 2000, Roberts 1996, Sedberry et al. 1996, Wakefield et al. 2010]. Evidence in support of a single biological stock, or stock structuring within broader Australian waters is limited.

Here, assessment of stock status is presented at the jurisdictional level—Commonwealth, Western Australia, Queensland, New South Wales and South Australia.

Toggle content

Stock Status

New South Wales

Hapuku have primarily been caught as a by-product species in the Ocean Trap and Line (OTL) Fishery on dropline gear, where target species are commonly Blue-eye Trevalla (Hyperoglyphe antarctica). Since 1997–98, commercial catches of Hapuku have been reported independently of Bass Groper (P. americanus). Annual commercial catches of Hapuku have declined from a peak of 15.6 t in 1999–2000. Within the last decade (2009–10 to 2018–19) the average annual commercial catch of Hapuku was <3 t, and within in the last five years (2014–15 to 2018–19) was 1.6 t. Similarly, annual total effort (days fished) has declined steadily over the same period. Together with information on the mean weight (7.6 kg) of Hapuku caught and retained in the OTL Fishery [Macbeth and Gray 2015], the commercial fishery for Hapuku over the last five years, is responsible for the harvest of an average annual number of <250 individual fish. 

 

From 1997–98 to 2009–10 droplining accounted for about 90 percent of total annual commercial catches. Since 2009–10, annual catches on dropline gear steadily declined, with decreasing levels of effort (days), to an average of about 60 per cent of total annual catch. Commensurate with these changes were increases in catch (and days of effort) and the percent of total annual catch on handline gear. Standardised catch rates (kg per day) for droplining in the OTL Fishery showed no significant trend between 1997–98 and 2018–19, with larger variance surrounding estimates after 2007–08 and particularly in 2018–19, associated with fewer active fishing businesses and fewer catches. From 2009–10, mean estimates of standardised catch rates declined to a historical low in 2014–15, where it has generally remained, with some indication of an increase in 2018–19. Median nominal catch rate (kg per day) for handlining also showed no clear trend between 1997–98 and 2018–19. As similarly indicated in standardised dropline catch rate, handline nominal median catch rate also increased in 2018–19 [Chick and Fowler 2020].

 

Although New South Wales commercial catches are low, the impact of fishing on the Hapuku stock in New South Wales remains uncertain. Recreational and Indigenous catch of Hapuku is not well understood in New South Wales. Henry and Lyle [2003] estimated the New South Wales annual recreational harvest of Rock Cod/Gropers (including Hapuku and nine other ‘offshore/deep’ species) to be 4 770 (± 1 532) individuals, with offshore (> 5 km from shore) recreational fishing effort representing 1.3 per cent of the State-wide total. West et al. [2015] and Murphy et al. [2020] reported no recreational catch of Hapuku in 2013–14 or 2018–19, respectively.

 

A review of indicators (weight-of-evidence approach) was used to assess the status of Hapuku in New South Wales. There are insufficient data available to support more quantitative stock assessment methods. Important knowledge gaps and areas of uncertainty for Hapuku assessment include (i) Hapuku stock structure, biology and recreational catch, (ii) low and decreasing levels of commercial catch, together with similar patterns in effort (days), and (iii) low and variable catches and effort between different commercial fishing gears and methods. Point (iii) exacerbates uncertainty surrounding estimates of standardised and nominal catch rates. The cumulative effect of these uncertainties means there is insufficient information available to confidently classify the status of this stock [Chick and Fowler 2020].

 

On the basis of the evidence provided above, Hapuku in New South Wales is classified as an undefined stock.

Toggle content

Biology

Hapuku biology [Ball et al. 2000, Paxton et al. 1989, Wakefield et al. 2010]

Biology
Species Longevity / Maximum Size Maturity (50 per cent)
Hapuku 52 years Females 1 114 mm TL Males 702 mm TL Females 7.1 years, 760 mm TL Males 6.8 years, 702 mm TL
Toggle content

Distributions

Distribution of reported commercial catch of Hapuku

Toggle content

Tables

Fishing methods
New South Wales
Commercial
Line
Various
Charter
Hook and Line
Indigenous
Hook and Line
Recreational
Hook and Line
Management methods
Method New South Wales
Charter
Bag and possession limits
Boat limits
Licence
Spatial closures
Commercial
Gear restrictions
Limited entry
Spatial closures
Vessel restrictions
Indigenous
Customary fishing management arrangements
Recreational
Bag and possession limits
Boat limits
Licence
Spatial closures
Catch
New South Wales
Commercial 1.76t
Indigenous Unknown
Recreational Unknown

Western Australia – Recreational (management methods) Recreational Fishing from Boat Licence is required for use of a powered boat to fish or to transport catch or fishing gear to or from a land-based fishing location.

Queensland – Indigenous (management methods) for more information see https://www.daf.qld.gov.au/business-priorities/fisheries/traditional-fishing

New South Wales – Indigenous (Management Methods) - https://www.dpi.nsw.gov.au/fishing/aboriginal-fishing

Toggle content

Catch Chart

Commercial catch of Hapuku - note confidential catch not shown

Toggle content

References

  1. AFMA 2014, Residual risk assessment. Teleost and chondrichthyan species: Report for the scalefish automatic longline method of the gillnet hook and trap sector. Australian Fisheries Management Authority.
  2. AFMA 2015, Ecological risk management: Strategy for the southern and eastern scalefish and shark fishery. Australian Fisheries Management Authority.
  3. Ball, AO, Sedberry, GR, Zatcoff, MS, Chapman, RW and Carlin, JL 2000, Population structure of the wreckfish Polyprion americanus determined with microsatellite genetic markers. Marine Biology, 137(5-6): 1077–1090.
  4. Beentjes, MP and Francis MP 1999, Movement of hapuku (Polyprion oxygeneios) determined from tagging studies. New Zealand Journal of Marine and Freshwater Research, 33(1): 1–12
  5. Chick, RC and Fowler, AM 2020, Stock status summary – Hapuku 2020. NSW Department of Primary Industries. Fisheries NSW, Port Stephens Fisheries Institute. 15 pp.
  6. Henry, GW and Lyle, JM 2003, The national recreational and Indigenous fishing survey. Fisheries Research and Development Corporation, Canberra.
  7. Kailola, PJ, Williams, MJ, Stewart, PC, Reichelt, RE, McNee, A and Grieve, C 1993, Australian fisheries resources. Bureau of resource sciences, department of primary industries and energy. Fisheries Research and Development Corporation, Canberra, Australia.
  8. Macbeth, WG and Gray, CA 2015, Observer-based study of commercial line fishing in waters off New South Wales, NSW DPI – Fisheries Final Report Series No. 148. Commercial Fishing Trust Fund Project no. FSC2006/179.
  9. Martell, S and Froese, R 2013, A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14: 504–514.
  10. Murphy, J.J., Ochwada-Doyle, F.A., West, L.D., Stark, K.E. and Hughes, J.M., 2020. The NSW Recreational Fisheries Monitoring Program - survey of recreational fishing, 2017/18. NSW DPI - Fisheries Final Report Series No. 158.
  11. Paul, LR 2002, Can existing data describe the stock structure of the two New Zealand groper species, hapuku (Polyprion oxygeneios) and bass (P. americanus)? New Zealand Fisheries Assessment Report 2002/14. 24p.
  12. Paxton, JR, Hoese, DF, Allen, GR, and Hanley, JE 1989, Pisces. Petromyzontidae to Carangidae Zoological Catalogue, 7. Australian Government Publishing Service, Canberra, Australia.
  13. Penney, A, Williams, A and Hobsbawn, P 2018, SESSF Hapuku Stock Status Summary–2018
  14. QFish, Department of Agriculture and Fisheries, www.qfish.gov.au
  15. Roberts, CD 1996, Hapuku and bass: the mystery of the missing juveniles. Seafood New Zealand, 4: 17–21.
  16. Sedberry GR, Andrade CA, Carlin JL, Chapman RW and others 1999, Wreckfish Polyprion americanus in the North Atlantic: fisheries, biology, and management of a widely distributed and long-lived fish. American Fisheries Society Symposium 23, American Fisheries Society, Bethesda, Maryland, 27−50.
  17. Wakefield, CB, Newman, SJ and Molony, BW 2010, Age-based demography and reproduction of hapuku, Polyprion oxygeneios, from the south coast of Western Australia: implications for management. ICES Journal of Marine Science, 67(6): 1164–1174.
  18. Webley, J, McInnes, K, Teixeira, D, Lawson, A and Quinn, R 2015. Statewide Recreational Fishing Survey 2013–14. Department of Agriculture and Fisheries, Queensland Government.
  19. West, LD, Stark, KE, Murphy, JJ, Lyle, JM and Ochwada-Doyle, FA 2015, Survey of recreational fishing in New South Wales and the ACT, 2013/14. Fisheries Final Report Series No. 149. NSW Department of Primary Industries, Wollongong.
  20. Zhou, S, Fuller, M and Daley, R 2012, Sustainability assessment of fish species potentially impacted in the Southern and Eastern Scalefish and Shark Fishery: 2007-2010. Report to the Australia Fisheries Management Authority, Canberra, Australia.

Downloadable reports

Click the links below to view reports from other years for this fish.